Valine‐279 deletion–mutation on arginine vasopressin receptor 2 causes obstruction in g‐protein binding site: A clinical nephrogenic diabetes insipidus case and its sub‐molecular pathogenic analysis

Ming Chun Chen, Yu Chao Hsiao, Chun Chun Chang, Sheng Feng Pan, Chih Wen Peng, Ya Tzu Li, Cheng Der Liu, Je Wen Liou, Hao Jen Hsu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Congenital nephrogenic diabetes insipidus (CNDI) is a genetic disorder caused by mutations in arginine vasopressin receptor 2 (AVPR2) or aquaporin 2 genes, rendering collecting duct cells insensitive to the peptide hormone arginine vasopressin stimulation for water reabsorption. This study reports a first identified AVPR2 mutation in Taiwan and demonstrates our effort to un-derstand the pathogenesis caused by applying computational structural analysis tools. The CNDI condition of an 8‐month‐old male patient was confirmed according to symptoms, family history, and DNA sequence analysis. The patient was identified to have a valine 279 deletion–mutation in the AVPR2 gene. Cellular experiments using mutant protein transfected cells revealed that mutated AVPR2 is expressed successfully in cells and localized on cell surfaces. We further analyzed the pathogenesis of the mutation at sub‐molecular levels via long‐term molecular dynamics (MD) simulations and structural analysis. The MD simulations showed while the structure of the extracellular ligand‐binding domain remains unchanged, the mutation alters the direction of dynamic motion of AVPR2 transmembrane helix 6 toward the center of the G‐protein binding site, obstructing the binding of G‐protein, thus likely disabling downstream signaling. This study demonstrated that the computational approaches can be powerful tools for obtaining valuable information on the patho-genesis induced by mutations in G‐protein‐coupled receptors. These methods can also be helpful in providing clues on potential therapeutic strategies for CNDI.

Original languageEnglish
Article number301
JournalBiomedicines
Volume9
Issue number3
DOIs
StatePublished - Mar 2021

Keywords

  • AVPR2
  • CNDI
  • Molecular dynamics simulation
  • Structural analysis
  • V279 deletion‐mutation

Fingerprint

Dive into the research topics of 'Valine‐279 deletion–mutation on arginine vasopressin receptor 2 causes obstruction in g‐protein binding site: A clinical nephrogenic diabetes insipidus case and its sub‐molecular pathogenic analysis'. Together they form a unique fingerprint.

Cite this